34 research outputs found

    A Low-Profile Beam-Steering Reflectarray with Integrated Leaky-Wave Feed and 2-Bit Phase Resolution for Ka-band SatCom

    Get PDF
    © 2021 IEEE - All rights reserved. This is the accepted manuscript version of an article which has been published in final form at https://doi.org/10.1109/TAP.2021.3111172A novel reflect array (RA) with ultra-low-profile and 2-bit phase quantization beam-steering ability is presented in this paper. To reduce the profile, a Leaky-wave feed is used to excite the RA with enhanced illumination efficiency. Moreover, simultaneous sum and difference patterns are also obtained to provide beam flexibility. The entire thickness of the proposed RA is less than 3% of that of the conventional front-fed RA with the same aperture. To increase the efficiency of the RA, a novel unit cell consisting of a polarizer layer and a reflection layer is developed, which is configured to provide polarization rotation and 2-bit phase shifts by using a hybrid of tunable polarization and discrete resonator. The operation principle, theoretical explanation, and implementation of the proposed antenna are elaborated in this work. To prove the design concept and beam scanning performance, an array with 9×7 unit cells operating atKa-band is designed and simulated firstly. 2-D beam scanning within the range of ±30º has been verified. Then, a passive prototype with 9×67 unit cells is designed, fabricated and measured. Experimental results show aperture efficiency of35.1% and illumination efficiency of 43.4%. The developed RA is scalable, and it provides a viable low-cost solution to develop low-profile, high-gain and beam-steering array antennas for satellite applicationsPeer reviewe

    Enzyme characterization and biological activities of a resuscitation promoting factor from an oil degrading bacterium Rhodococcus erythropolis KB1

    Get PDF
    Resuscitation-promoting factors (Rpf) are a class of muralytic enzymes, which participate in recovery of dormant cells and promoting bacteria growth in poor media. In the present study the expression vector of the rpf-1 gene from an oil-degrading bacterium Rhodococcus erythropolis KB1 was constructed and expressed in Escherichia coli. The expressed protein was purified by Ni2+-affinity chromatography, and showed muralytic activity when measured with 4-methylumbelliferyl-β-D-N,N′,N″-triacetyl chitotrioside as substrate. Addition of purified Rpf-1 to R. erythropolis culture efficiently improved bacterial cell growth. The purified protein also increased resuscitation of viable but nonculturable cells of R. erythropolis to culturable state. The conserved amino acid residues including Asp45, Glu51, Cys50, Thr60, Gln69, Thr74, Trp75 and Cys114 of the Rpf-1 were replaced with different amino acids. The mutant proteins were also expressed and purified with Ni2+-affinity chromatography. The muralytic activities of the mutant proteins decreased to different extents when compared with that of the wild type Rpf-1. Gln69 was found to play the most important role in the enzyme activity, substitution of Gln69 with lysine (Q69K) resulted in the greatest decrease of muralytic activity. The other amino acid residues such as Asp45, Glu51, Cys50 and Cys114 were also found to be very important in maintaining muralytic activity and biological function of the Rpf-1. Our results indicated that Rpf-1 from R. erythropolis showed muralytic activities and weak protease activity, but the muralytic activity was responsible for its growth promotion and resuscitation activity

    Crosstalk-free achromatic full Stokes imaging polarimetry metasurface enabled by polarization-dependent phase optimization

    Get PDF
    Imaging polarimetry is one of the most widely used analytical technologies for object detection and analysis. To date, most metasurface-based polarimetry techniques are severely limited by narrow operating bandwidths and inevitable crosstalk, leading to detrimental effects on imaging quality and measurement accuracy. Here, we propose a crosstalk-free broadband achromatic full Stokes imaging polarimeter consisting of polarization-sensitive dielectric metalenses, implemented by the principle of polarization-dependent phase optimization. Compared with the single-polarization optimization method, the average crosstalk has been reduced over three times under incident light with arbitrary polarization ranging from 9 μm to 12 μm, which guarantees the measurement of the polarization state more precisely. The experimental results indicate that the designed polarization-sensitive metalenses can effectively eliminate the chromatic aberration with polarization selectivity and negligible crosstalk. The measured average relative errors are 7.08%, 8.62%, 7.15%, and 7.59% at 9.3, 9.6, 10.3, and 10.6 μm, respectively. Simultaneously, the broadband full polarization imaging capability of the device is also verified. This work is expected to have potential applications in wavefront detection, remote sensing, light-field imaging, and so forth

    Peritumoral Microgel Reservoir for Long-Term Light-Controlled Triple-Synergistic Treatment of Osteosarcoma with Single Ultra-Low Dose

    Get PDF
    Local minimally invasive injection of anticancer therapies is a compelling approach to maximize the utilization of drugs and reduce the systemic adverse drug effects. However, the clinical translation is still hampered by many challenges such as short residence time of therapeutic agents and the difficulty in achieving multi-modulation combination therapy. Herein, mesoporous silica-coated gold nanorods (AuNR@SiO2) core-shell nanoparticles are fabricated to facilitate drug loading while rendering them photothermally responsive. Subsequently, AuNR@SiO2 is anchored into a monodisperse photocrosslinkable gelatin (GelMA) microgel through one-step microfluidic technology. Chemotherapeutic drug doxorubicin (DOX) is loaded into AuNR@SiO2 and 5,6-dimethylxanthenone-4-acetic acid (DMXAA) is loaded in the microgel layer. The osteosarcoma targeting ligand alendronate is conjugated to AuNR@SiO2 to improve the tumor targeting. The microgel greatly improves the injectability since they can be dispersed in buffer and the injectability and degradability are adjustable by microfluidics during the fabrication. The drug release can, in turn, be modulated by multi-round light-trigger. Importantly, a single super low drug dose (1 mg kg(-1) DOX with 5 mg kg(-1) DMXAA) with peritumoral injection generates long-term therapeutic effect and significantly inhibited tumor growth in osteosarcoma bearing mice. Therefore, this nanocomposite@microgel system can act as a peritumoral reservoir for long-term effective osteosarcoma treatment

    Study on fluidity of squeeze cast AZ91D magnesium alloy with different wall thicknesses

    No full text
    Rectangular cross-section specimens with different section thicknesses were prepared to study the influences of pouring temperature, mould temperature and squeeze velocity on the fluidity of squeeze cast AZ91D magnesium alloy by means of orthogonal test design method. The results show that pouring temperature, mould temperature and squeeze velocity can significantly affect the fluidity of magnesium alloy specimens with wall thickness no more than 4 mm, and the pouring temperature is the most influential factor on the fluidity of specimens with wall thickness of 1, 2 and 3 mm, while mould temperature is the one for specimens with wall thickness of 4 mm. Increasing pouring temperature between 700 °C and 750 °C is beneficial to the fluidity of AZ91D magnesium alloy, and increasing mould temperature significantly enhances the filling ability of thick (3 and 4 mm) section castings. The fluidity of squeeze cast magnesium alloy increases with the increase of wall thickness. It is not recommended to produce magnesium alloy casting with wall thickness of smaller than 3 mm by squeeze cast process due to the poor fluidity. The software DPS was used to generate the regression model, and linear regression equations of the fluidity of squeeze cast AZ91D with different wall thicknesses are obtained using the test results

    Waveguide Structure Design and Simulation for High-Temperature Corrosion Thickness Detection

    No full text
    Equipment corrosion often happens in the petrochemical industry, especially when high temperature materials are transported. The corrosion phenomenon should be monitored as a leak may occur due to corrosion and even cause fires and explosions. However, ordinary ultrasonic testing is not suitable for high temperature conditions because the probe may break. A waveguide structure was designed to economically detect corrosion thickness even at a high temperature 500 deg C and avoid the failure of the ultrasonic probe. Based on the heat transfer simulation, a waveguide rod was determined with optimized material, length, width and thickness, and the experiment validated the calculated result. Then, ultrasonic propagation through the designed waveguide rod and specimen was simulated. Propagation, reflection, attenuation and dissipation of the ultrasonic wave within the combined structure were displayed. A clear ultrasound signal was found near the center, while signal attenuation and dispersion occurred as it is gradually far away from the center. With the waveguide structure, an ultrasonic-guided wave testing device was developed to measure the thickness at high temperatures. Measurement error increases with temperature if the wave velocity is regarded as a constant. A temperature-dependent method was applied to achieve high precision detection at high temperatures. The research has good application potential for the corrosion detection of high-temperature equipment
    corecore